fc2ブログ

なぜ あなたは 行政書士試験に 合格できないのか?

どの法律系資格であっても、その確実なGETに必要なのは徹底的な過去問分析と方法論なのです。

数字問題は単純な数学問題に置き換えてみよう!? 平成18年度 問題51の過去問分析 

初めての方は 「なぜこのタイトルになったのか」

New 2014年度合格者の声は、こちら

YOUTUBE動画は、以下からご覧になってください。

New 憲法第1回 動画解説講義(全体編①)

New 憲法第1回 動画解説講義(実践編①)

できるだけ必要最小限の基本的知識で過去問の解説を試みております。
それには私なりの理由があるので、関心のある方は こちらへ どうぞ!


まぐまぐは こちらから どうぞ!



初めてブログを見に来ていただいた方はまず こちらへ どうぞ!



今回も前回と同様に出題形式として穴埋め問題であり、内容としては単純知識問題です。
ただ、単純知識問題の中でも数字の空欄補充ですから、正解するのは難しい問題です。

こういう場合は、前回もお話したように、空欄の周りのヒントから推測して解答の肢を絞り込んでいく方法が近道でしょう。

問題51を分析していきましょう。
過去問がない方は下記のリンクで参照してください。  http://www.sikakuyo.com/gyousho/honsiken/187mondai.html

まずどの空欄が一番簡単でしょうか。
出生率のことが書かれているウは比較的分かりやすいと思いますのでウから解説します。

<ウ>
解答の肢の選択肢は、2.7か1.57のどちらか2択です。

そして、問題文には「合計特殊出生率は急激に低下しはじめ、昭和から平成に移った1989年には、「丙午(ひのえうま)」の年の数値を下回る[ウ]に落ち込んだ。」と書かれています。

平成以降はバブル崩壊により不景気が続き、夫婦の共働きが増え、核家族化が進んでいることはご存知だと思います。

そうすると、出生率とは、夫婦が生涯子供を産む人数ですから、2人も産まなくなってきていることはニュースなどで聞いたことがあると思います。

◇ なお、「合計特殊出生率」は「合計特殊」という部分を難しく考えずに、単純に「出生率」と置き換えて考えてみてください。

意味が大体合っていればいいので、知らない言葉は無視して単純化することもテクニックの一つです。

また、もう少し単純な数学的な問題として考えてみると、夫婦は大人2人ですから、全ての夫婦が2人以上子供を産めば、将来的にも日本の人口は減らないはずです(早期死亡や生涯独身者を除く)。

そうすると、少子化になるということは、夫婦で2人未満の子供しか産まないことといえそうですね。

ですから、2人未満である「1.57」の方が正解に近いはずです。

このように数字問題で知識がない場合、単純な数学問題に置き換えてみるのも一つの手です。

よって、ウに入るのは、「1.57」です。

そうすると、「1.57」を含む解答の肢は、3,4,5ですね。
これで、3択問題になりました。

次はベビーブームについてヒントが書かれているイをやりましょう。
このベビーブームとは最近話題になっているいわゆる団塊の世代の人達です。

知識がないことを前提にまた数学的に考えてみます。

まず、解答の肢は270と410ですから2択ですね。

◇ なお、前回も書きましたが、2択ですから、より正解に近いものを選べばよいのです。

そして問題文には、「1940年代後半のベビーブームでは出生数が年間約[イ]万人に達した。」とあり、最後の文章では、「高齢化率は今後も上昇し続け、2025年(平成37年)には30%程度になると予想されている」と書かれています。

実はこのイの前後の文章と最後の文章はリンクしていることがわかります。
2025年(平成37年)に65歳になる方は1960年ごろに産まれています。

そして、日本人の平均寿命は80歳くらいですから、2025年(平成37年)に80歳になる方は
1945年ごろに産まれています。

つまり、2025年(平成37年)に65歳以上になる方は、1945年~1960年に産まれているので、
問題文にあるように1940年代後半のベビーブームの方達が含まれることになりますね。

そして高齢化率は、2025年(平成37年)には30%程度になるということですから、日本の総人口を単純に1億2千万人とした場合、1億2千万人×30%=3600万人となります。

ここから単純に考えると、1945年~1960年に産まれた方達の人口が3600万人くらいになるはずです(だいたいの目安なので、65歳になる前に亡くなった方や2025年の時点で80歳以上の方たちの数は相殺しあうと考えて除きます)。

そうすると、1945年~1960年の15年間に産まれた方達の人口が3600万人ですから、その間の1年間ではどれくらいの出生数があったかというと、3600万人÷15年間=240万人となります。

これが、この15年間に産まれた方達の1年間の出生数の平均値となります。

ここでイに戻ると、「1940年代後半のベビーブームでは出生数が年間約[イ]万人に達した。」のですから、統計的に考えて平均値の240万人より多く、平均値から離れすぎていないものが答えになるはずです。

そうすると、270と410では、270が平均値の240万人より多く、平均値から離れすぎていないものですね。

ですから、イに入るのは270となります。

270が入るのは、解答の肢3しかありませんので、この時点で3が答えになります。

以上のように、知識がなくても数学的な考え方をすると何とか答えがでましたね。

この問題の出題の意図が単純な知識問題であるとするなら、数字まで正確に覚えている方は余りいないでしょうから出題形式が穴埋め問題でも捨て問に近い難しい問題でしょう。

ただ、あくまで私の個人的な考えかもしれませんが、数学的な考え方で答えが出たということは、平成17年度の本試験まで出題されていた数学の問題を隠れて聞いていたのではないかと思っています。

もっとも、全ての空欄の選択肢が2択なので、その辺で解答しやすくしているのかもしれません。

◇ なお、イが分からない場合、他の空欄は何をがかりに入れたらいいでしょう。

アは、「最低値」をどうとらえるかでしょうね。
単純に最低値なんだから、低いほうの4.7が答えになると考えてもいいかもしれません。

もっともウとアがわかっても、結局イかエのどちらかがわからないと答えは出ませんね。

エは、実際に数字を入れて考えるしかないのでしょうか。
例えば、仮にエに「19.5」%が入るとすると、平成37年には30%程度になるわけですから、平成16年~平成37年までの21年間で10.5%増える計算になります。

そして、10.5%を21年間で割ると、1年間で0.5%増えることになりますね。
これを総人口で計算すると、日本の総人口を単純に1億2千万人とした場合、
1億2千万人×0.5%=60万人となります。

同じように、仮にエに「24.9」が入るとすると、21年間で5.1%増える計算になります。
5.1%を21年間で割ると、1年間で約0.25%増えることになりますね。
これを総人口で計算すると、1億2千万人×0.25%=30万人となります。

エに「24.9」が入るとすると、団塊の世代が含まれていく割には、上昇率が低い気もするので、エに「19.5」%が入ると考えるのが素直かなというくらいでしょうか。

ウとエが分かれば正解が出るのでこのアプローチもいいかもしれませんね。

知識をあまり使わずに解ける他の方法を皆さんも考えてみてください。

今回はこの辺りでおわります。


役に立ったと思っていただけましたら

をポチッとよろしくお願いいたします。
 
スポンサーサイト



テーマ:資格取得 - ジャンル:学校・教育

コメント

質問またはコメントの投稿


管理者にだけ表示を許可する

トラックバック

トラックバックURLはこちら
http://sakuradarimuseo07.blog110.fc2.com/tb.php/79-3eb2151d
この記事にトラックバックする(FC2ブログユーザー)